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I'iTRODUCTlOl\

The aim of this paper is to determine the asymptotic eigenvalue
behaviour of integral operators in L 2(X, fL) whose kernels are positive
definite and satisfy a certain Holder-continuity condition. Here X is a
compact metric space and II is a finite Borel measure on X.

The study of integral operators over compact metric spaces was initiated
by a problem posed by Pietsch at the sixth Polish--GDR seminar on
"Geometry of Banach Spaces and Operator Ideals" (Georgenthal, 1984).
Since then several papers have appeared dealing with operators of this
kind, see [5, 6, 1] and also the forthcoming monograph [2]. The obtained
eigenvalue results reflect compactness properties of the underlying space X
expressed in terms of its entropy numbers (l:n(X)). Moreover, it turned out
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that there are connections bctwecn these eigenvalue results and dimension
theory of compact metric spaces, see [I].

In all these papers continuity of the kernel in both variables and
C(-Holder continuity in one variable is assumed. We consider here weaket
integrated :x-Holder conditions and do not require global continuity.

In the one-dimensional case, i.e., X = [0, I] and J1 = Lebesgue measure,
this problem was first considered by Reade [9]. Hc showed that the decay
of the eigenvalues of such a positive integral operator is of order O(n -, I).
Later on, Cochran and Lukas [3] extended this result to the case when a
higher-order derivative of the kernel satisfies that Holder condition. The)
also gave a new proof of Reade's result. But in both of these papers the
additional assumption of global continuity of the kernel is necessary for the
methds of proof.

Thus, even in this one-dimensional case, we improve the known result
since we do not require global continuity of the kernel, which seems a bit
artificial in connection with integrated Holder conditions.

The general approach that we develop allows us to obtain as an
immediate consequence a generalization of Reade's result to the multi
dimensional case of bounded domains in IR N

. The procedure we use alsc
works for arbitrary Borel measures and not only thc Lebesgue measure.

Ncvertheless, the basic idea of our proof is not new. One can find it in
several papers by different authors (in particular, in [9,3]). We first
approximate the integral operator by a finite rank operator such that the
difference is still a positive operator in L 2(X, J1), and then we estimate frorr
above the trace of this difference.

The paper is organized as follows. In the first section we fix notation and
give some preliminaries. In the second section we prove the eigenvalue
result, and in the third one we show that it is optimal in general. In the
final fourth section we construct some examples of compact metric spaces
with regular entropy behaviour. Thus we illustrate that the condition
1: 2n(X) ~ c,,(X), which we need for our results, is quite natural and is
satisfied for many compact spaces.

I. PRELIMINARIES

In what follows, we designate by X a compact metric space and by d its
metric. The symbol B(x, e) stands for the open ball of radius f. > 0 with
centre XE X

B(x, e) = {YE X: d(x, y) < d.
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Given a set A c:; X,

diam(A)=sup{d(x, y):x, YEA},
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denotes its diameter. We say that the set A is f.-distant, if d(x, y);;::; I: for all
x, YEA, x I:- y.

The entropy numbers (c:n(X)) of X are given by c,,(X)=inf{r.>O:
there are x1, ... ,XnEX with X=U7~1 B(xi,c)} (see [5J). Note that
lim" ~ f. cn(X) = 0 is equivalent to precompactness of X (and therefore to
compactness if X is complete). Thus the rate of decay of f-n(X) as n ---+ x.
can be considered as a measure for the "degree of compactness" of X.

By a partition of X we mean a finite family .9'1 of disjoint Borel sets
AI' ... , A" such that U ;J~ 1Ai = X. The diameter of <rf is defined by

diam(.!iI) = sup{ diam(A): A E.#}.

We say that the partition .r1' is finer than the partition .?J (.r1' -< .J6I) if each
AE.r1' is contained in some BE36. Given any two partitions.W; and .r1'2,
there always exists a partition .sf finer than these two, e.g.,

For 0 < x ~ I, the space of ':I.-Holder continuous functions is defined as

C(X) = {f: X ---> c: I is continuous and !IIiI c' < Cfv },

where

'{ If(x) - f(Y)I}Ifl C' = max sup II(x)l, sup d\>'
XFX ~.cX (~YJ

'::.1-' .~

Let jJ. be any finite Borel measure on X. We recall that every finite Borel
measure {Ion a compact metric space X is rexular in the sense that for any
Borel set Er;;.Xwe have

jJ.(E) = inf{jJ.(G): G is open and Er::; G}

sec, e.g., [4].
We shall work with the class of kernels L1(X, jJ.; C'(X)) formed by all

Rorel measurable kernels K: X x X ---+ C such that the norm

is finite.
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Note that if K ELI (X, /l; C~(X)), then there is a non-negative function
LEL1(X,/l) such that

IK(t, x) - K(t, y)1 ~ L(t) d(x, y)' for aU t, x, yE X.

For KE L,(X, /l; C(X)), the integral operator with kernel K and
measure /l is defined as

TK.p.f(x) = f K(x, y)f(y)d/l(Y)
x

forfEL1(X,/l) and XEX.

Subsequently, we are only interested in positive definite kernels, thus we
always assume that K is Hermitian, i.e.,

K(x, y) = K(y, x) for all x, y E X.

It is easily checked that the integral operator TK.!, associated to such a
kernel KEL1(X, /l; C(X)) defines a bounded operator in L,(X,/l) and
also in L.c(X, /l). Consequently, by the well-known Riesz-Thorin theorem,
the operator

is bounded.
Assume now that H is a (complex) Hilbert space and S E !f( H, H) is a

compact operator. We denote by (";',,(S)) the sequence of aU eigenvalues of
S counted according to their algebraic multiplicities and ordered with
respect to decreasing absolute values,

If S has less than n eigenvalues, then we set

The singular numbers of S are defined as

Clearly,

if rank(S)<n.

Moreover, it holds

see, e.g., [8].
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An operator S E !f( H, H) is called positive if
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(5h, h) ~ 0 for all hE If.

A Hermitian kernel K is called positive definite if T K.lt is a positive operator
in L 2(X, Il).

As usual, given two sequences (an), (h,,) of positive real numbers, we
write a" =G,,(hnl if a" ~ cb" for some c> 0 and all n EN, while a" ~ h"
means that both a" = O(h,,) and btl = O(an). Moreover. we write a" = o(hnJ
if lim" _. '.( an/h" = O.

2. EIGEl\;VALCE RESULTS

Before we can prove our main theorem we still need an auxiliary result
which follows easily from elementary measure theory.

LB1MA 1. Let X he a compact metric space and let d n > 2f. Il(Xl with
limn _. .( d" = O. Then there are partitions d n and ~" of X such that fiJr all
n E N the following properties are satisfied:

(I) card(.wn) ~ nand diam(.wn ) ~ £in:

(2) :1B" i I -< J6" -< ''''/".
MoreOFer, if we define

then

(3) For any finite Borel measure fl on X, Un'= 1 G" is dense ill the
Hilhert space L 2(X, fl).

Proof We start by constructing the partItIOns .r4". Since rn ;=

d,,/2 > [;,,(X), it follows from the definition of the entropy numbers that
there exist n balls B l' ... , B" of radius 1'" that cover X. Setting

and
/<1

for i = 2, ..., n.

we get a partition .r4" = {A I' ... , An} of X with property (1).
Next we find by induction the partitions [jdn' For n = 1 we take PAl ;= .oil •

If the partitions 141 , ... , ;]Bn have been already constructed, then we take as
.J.dn ; I any finite partition which is both finer than .rln I I and ~n (as we men
tioned under Preliminaries, such partition always exists). Obviously (2)
also holds.
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It remains to prove (3). Let J1 be any finite Borel measure on X. The step
functions that take only finitely many values are dense in L 2(X, J1), see, e.g.,
[ 4]. Hence it suffices to show that for every Borel set E <:;: X and each c> 0
there arc n E ~ and g E Gn with IIX!: - gill, ~ c.

Since /1 is a regular measure, we can find an open set G such that E <:;: G
and J1(G\E) ~c2/4. Next we define sets F,,:= UBdn.B~G B and show that

G=U;;"~l F".
Given any x E G there is b > 0 with B(x, (5) <:;: G, since G is open. Choose

mEN with dm < f>. The point x belongs to some set B of the partition
Mm. Moreover, since Mm is finer than .s4m, we have diam(B) ~ dm< O.
This implies x E B <:;: B(x, b) <:;: G, and therefore x E Fm' Consequently
G <:;: U;;"~ 1 Fn- The other inclusion is obvious.

The sets Fn are increasing because the partitions .OA" become finer with
increasing n. This, together with the O'-additivity of J1, gives

J1(G) = lim J1(F,,).
" • ox:

Hence we can select an integer n E N with

By definitions of F" and G", the function g = XF" belongs to Gn' This finally
yields

;lXl'; - gil 1-2 ~ IlxF.- Xc; tl/ 2 + IIXG - gl! 1.2

= J1(G\E)1!2 + /1(G\F,,) 1/2 ~ C.

Thus (3) is satisfied as well, and the proof is finished. I

After this preparation we can pass to our main result on the asymptotic
eigenvalue behaviour of integral operators whose kernels are positive
definite and satisfy an integrated a-Holder condition.

THEOREM 2. Let X he a compact metric space equipped with a finite
Borel measure J1, let 0 < ':J. ~ 1, and assume that 8 2,,(X) ~ f-n(X). Then, for
every positive definite kernel K ELI (X, J1; C'X( X)), one has

Proof We shall write simply T instead of TK.I' and L 2 instead of
L 2(X, /1). We shall also use the notation introduced in Lemma 1.

Let P" be the orthogonal projection in L 2 onto the finite-dimensional
subspace G" constructed in Lemma 1. Since the Gn's are increasing and



EIGENVALUES OF I1'TEGRAL OPERATORS 45

their union is dense in 1.2, we can find an orthonormal basis (ei)I" '" such
that

For any operator S in 1. 2 , we have

J~I

trace(SPn ) = L (Sei , eJ
i" 1

Moreover

trace(S) = L (Sei , ell
) .. I

provided the series converges. For positive S, all summands are non
negative, so the convergence of the series is equivalent to

.in
sup L (Sei , eJ = sup trace(SPnl < Xi.

In this case,

n i= I "

trace(S) = sup trace(SP,,).

"
Now let Q be the orthogonal projection onto

where m is some fixed integer and .rd,,, is the partition from Lemma 1. We
want to estimate from above

trace((I-- Q) T(/ - Q)).

Obviously (1- Q) T(l- Q) is a positive operator in L 2' hence the preced
ing observaion applies. So, let us fix n;;:; m, and let A I' ... , A k and B], ... , B r

be those sets having positive p-measure in sfm and .~", respectively. Then
the functions

f,:= p(AJ 1/2 l.A" i = 1, ... , k, and B ) - I" . 1
f(i :=p( i - 1.8,'./= , ... , r,

form orthonormal bases in E and G", respectively. Moreover, we have
Er;; G" because .11)" is finer than .'4,,,. Therefore

(>40.63 ·]·4



46

Observing that

and

we obtain

COBOS A1'<D KUHN

k •

L li(t) J li(Y) dJ1(Y) = 1 a.e.
i~ I X

trace((l- Q) T(I - Q) Pn) = trace( T(l- Q) Pn(I - Q))

= trace( T(PII - Q))

= trace( TPIl ) - trace( TQ)

= iff K(t, x) gj(X) gj(t) dJ1(x) dJ1(t)
j -1 X X

k

- L f f K(t, y) I(y) j;(t) dJ1(Y) dJ1(t)
;." 1 X X

k ,.

= L L f f f [K(t, x) - K(t, y)] gj(X) gj(t)
;_- 1 j= I X X X

xj;(y)j;(t) dJ1(x) dJ1(Y) dJ1(t).

Since every Bj is contained in some A;, we can split the index set {I, ..., r}
into disjoint subsets

i= I, ..., k.

For fixed i, the integrand is only non-zero when

and for some j Eli'

But in this case, it holds x E Ai as well. Whence the assumption on the
kernel implies

IK(t, x) - K(t, y)1 ~ L(t) d(x, y)~

~ L(t)[diam(AJY

for some non-negative function L ELI (X, J1). By Lemma 1
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where dm> 2"m(X) can be chosen arbitrarily. In addition, the properties of
the partitions of Lemma 1 give

and

Ji(A i ) = L Ji(Bj ),

j E I,

i= 1, ..., k,

k

U U B;=X.
i= 1 je II

All this together yields the estimate
k .'" t" ..

trace((l- Q) T(l- Q)Pn) ~ d~, I I I I I L(t) dJi(x)
i = 1 j E Ii .. B} oJ A; ... B./

X dJ1.(Y) dfl(t) J1.(A,) -I J1.(Bj ) I

k •

=d:n I I j L(t)dJi(t)
I ~ I jc I, B}

=d:" I/LI1 / "

On the other hand, taking into account that

rank[T - (1- Q) T(l- Q)] ~ 2k ~ 2m,

we have

S3m( T) ~ ,\'m((1 - Q) T(l- Q)) + 52m. I( T - (l- Q) T(l- Q))

=sm((1 - Q) T(I- Q)),

Consequently,

ex-

~ I 5;((1- Q) T(I- Q))
j~ I

=trace((I- Q) T(J - Q))

=suptrace((I-Q) T(I-Q)Pn)~d~,IILIILI'

Letting d", --+ 2B m (X) and observing that A3m ( T) = .1'3"'( T), since T is a
positive operator in L 2 , we obtain
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Finally, the assumption czAX):::o Bn(X) yields the desired asymptotic
behaviour

Remark 3. The assumption CZn(X) :::0 cn(X) excludes, roughly speaking,
too fast decay of the entropy numbers of X. This condition is not very
restrictive; e.g., it is satisfied for every connected compact metric space (see
[5, Lemma 3]), or if Gn(X) :::0 n -fJ(log nF for some f3 > 0 and (' E IR. In the
last section of the paper we give examples of such compact metric spaces
which are totally disconnected.

In the proof of Theorem I we have note used the compactness of X but
only the behaviour of its entropy numbers. Therefore, since the entropy
numbers of any bounded Borel set Q £: IR N with non-empty interior arc of
the same asymptotic order as those of the unit cube [0, 1Y', i.e.,
cn(Q) :::0 n -liN, we derive as an immediate consequence

THEOREM 4. Let j1. be a Borel measure on a bounded Borel set Q £: iR N

with non-empty interior and let KEL j (Q,j1.;CX(Q)) be a positive definite
kernel. Then

io n(TK,!1)=O(n -x/N- 1).

This theorem extends Reade's result mentioned in the Introduction to
multidimensional domains and arbitrary Borel measures. Note that global
continuity of the kernel is not required, although this extra assumption was
necessary for Reade's original proof [9] (and also for the Cochran and
Lukas one [3]).

3. OPTIMALITY OF THE EIGEl"VALUE ESTIMATES

In this section we comment on the sharpness of the eigenvalue results
established in Theorems 2 and 4.

The following theorem shows that the asymptotic order of the eigen
values established in Theorem 2 is the best possible.

THEOREM 5. Let X be a compact metric space satisfying czn(X) :::0 Gn(X),
and let 0 < C( ~ 10 Then for every sequence (an) of positive real numbers with
an = o(n-1cn(X)") there are a finite Burel measure fJ. un X and a positive
definite kernel K ELI (X, fJ.; CX(X)) such that

lim An(TK,j1)!an = x.
n_ ::c
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Proof First we show that (an) can be majorized by a sequence (An)
such that still A II = o(n - 1(;II(X)') and moreover A 2n ~ A II' This latter
property is essential for our proof.

By assumption

with lim CII = O.
11 ,-+ X

Defining

C j :=sup Cb

k~!

C2n=C2n+1 :=max(C
n

, sup Ck )
2 k;;; 2n

for n ~ 1

we obtain a sequence which clearly satisfies

Cn~ Cn and

By induction one easily verifies that (Cn) is decreasing. Hence lim n _ x en
exists. and the estimate

lim Cn= lim C 2n ~! lim Cn+ lim sup Ck =! lim Cn
11 .. 7; 11 '-+ :X; 11 ...... :x:: Il -'~ "X:. k ~ 2" !J - (:t.

shows that this limit is zero. Then taking

we get the desired sequence. Obviously An~an and An=o(n1cn(XY)·
Moreover A2n~An because the sequences (en)' (n I) and (f;n(X)) enjoy
this property.

So without loss of generality we may assume that a2n ~ an' Put
bn := (nan)L,. Then one has

lim (;n(X)/h n= X
II_ct-·

and

The following construction is based on ideas taken from [5, Theorem 3J.
For k= 1,2, ..., we find inductively positive integers nk , real numbers f. k ,

0< (;k < 1, and subsets Xk , Yk of X with the following properties:

(l) n k > nk . \ and f,k \ ~f,k ~k5/'bll,;

(2) X k and Yk are closed subsets of Yk _ I'

(3) X k is a 2(;k-distant subset consisting of llk elements;

(4) d(Xb Yd~f,k;

(5) limn ~ ,y:. cn ( Yk)/h n = oc.

To prove this, assume that for 1~ j < k we have already found ni , [;i' Xi'
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and Y
J

with properties (1) to (5). (In the first step of induction we can
argue in the same way but starting with X instead of Yk _ 1') Using (5) and
the fact that b2" ~ b", we can find an integer nk > nk - 1 such that

kS/"b"k ~ f',k := f',2"k ( Yk- 1)/3.

Moreover, compactness of Y k _ 1 implies that its entropy numbers tend to
zero. Hence we may also assume that Gk ~ ek _ l' Thus (1) is satisfied. Let
now M be a maximal 2f',k-distant subset of Yk .. I' Then

Yk- 1 £::: U B(x,2f',k)'
XE M

and since 2ek < f',2"k( Yk d, it also follows that card(M);;; 2nk' So we can
select two disjoint subsets M I and M 2 of M, each one containing nk
elements. The sets

Zi:= U B(x, f',k),
xeMj

are disjoint as well. Whence

i = 1, 2,

Using again (5), the trivial observation

nE N,

and the fact that b2" ~ b", we obtain that for at least one i, say i = 1,

lim G,,(Yk_1\Zd/b,,=co
"-010

still holds. Consequently, if we set

and

the conditions (2) to (5) are satisfied.
Next we construct the measure J1 and the kernel K.
Put

and define J1 as the point measure assigning to Xk.j' j = 1, ..., nk' k E ~, the
mass k - 2n;; I . Clearly J1 is a finite Borel measure on X.

In order to construct the kernel, consider the functions (see [5])

XEX.
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Elementary computations show that for any kEN and any sequence of
scalars (~;);'~_ I it holds

Define now

x nJ,;.

K(x, y):= L k -2E~ L fk_J(X) fk,Av).
k = I j~ 1

For each x EX and kEN, it follows from (*) that

I: nk I

jl L fk,i(X)j~.i!i ~ 2Ek ' max 1f~,/(x)1 ~ 2E;;'.
jlj= J I, C' I '5:j~n,

Thus, for every x E X, we get

x

IIK(x"):le~2 L k- 2 =c<x,
k=1

and consequently

,
II KII Lj(C') = t IIK(x,' )I! (', dp(x) ~ cpt X) < x;,

(*)

Moreover, K is positive definite because, given any f E L2(X, p), we have

a: nk

(TK,,,f, f) = L k -2"Z L I(f, .f~,;)12 ~ 0,
k= 1 i~ I

To complcte the proof, we necd to show that

lim )'n( T K./..)/a ll = 'X) ,
n -. t:£,

According to the definition of fk,J' we see that

if k =rand j = s,
otherwise,

Hence, for kEN and j= l, .. " nk , we have

T J' k-4 j '}'
K,/l k,J = nk Ek k,.I·
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Whence, using (I) and recalling that h" = (na,yi"', we arrive at the
inequality

Since this estimate holds for the strictly increasing sequence (nd, we finally
obtain the desired assertion

lim i.n(TK,,,)!a,, = ,x. I
n -. X

Theorem 5 also implies that the asymptotic behaviour of thc eigenvalues
established in Theorem 4 is the best possible. In fact, for the case of
bounded domains in iR N

, the optimality even holds in a stronger sense,
namely without constructing a suitable measure but using the most natural
measure on IR N

, i.e., the Lebesgue measure.
Indeed, consider the N-dimensional unit cube [0, l]N equipped with the

Lebesgue measure )1. It was proved in [7, Theorem 5] that, given any
0< (i. ~ I, there exists a positive definite continuous kernel K such that

IK(t, x) - K(t, y)1
sup < CD

t,x,y~X d(x, y)'
X-F-y

and

[thercforeKEL1([0, 1]"";(,,([0, 1]11'))]

. (T )'" -a./N I
I." K,Jl - n .

Whence the eigenvalue estimate cannot be improved.

4. EXAMPLES OF COMPACT METRIC SPACES WITH

REGULAR ENTROPY BEHAVIOl:R

We have already mentioned in Remark 3 that the condition /;2"(X) ~
/;lI(Xj which we need for our results, is satisfied for every connected com
pact metric space, or if f;n(Xj ~ n -li(log nr. In this final section we give
fairly easy examples of totally disconnected compact metric spaces X such
that

for given P> °and "l E !R, or p=°and 'I' < 0. Similar examples can be found
in [6], but only for a very special choice of Pand y.

First we describe a construction which is quite common in geometric
measure theory and in the theory of fractals. The basic model of this
construction is the Cantor set.
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Let q = (qJ be any sequence of positive real numbers such that for somc
1'>0

r~q,,~ 1/3, II = 1,2, ....

Start with the unit interval [0, 1] and remove in the first step an open
interval, such that two closed intervals of length ql remain. Then proceed
inductively, but at the 11th step take the ratio £If!"

So, after 11 steps, one has 2" closed intervals I", J' I ~ j ~ 2", of length
ql ... £I" with mutual distance? £II'" £I" (since all q" ~ 1/3). Put

2"

E II := U 1"./
J~ 1

and
}I-I

Note that never endpoints of intervals are removed. Therefore C 1." contains
2" -! I points (namely the endpoints of the 2" intervals I".}) which have
mutual distance ? q 1 ••• £I". Moreover, the 2" + I (closed) balls centered at
these points with radius q1 ... q,,/2 cover E" and hence also C I•4 ,

Carrying out this construction in [R'" (with the sup-metric), i.e., setting

xc

CN .,,:= n E"x .. , xE".
fl=l~

.v-limes

we get 2(11+ l)N points with the same properties as above. Whence,

that means

Let now (a,J be any sequence of positive real numbers such that for
11 > 110 it holds

and a"·1 I ~ a,,,

where 0 < a < A < 1 are constants and k? 2 is some integer. This implies
that for appropriate r> 0 and N E N

Q21l,""r<---< )/3
== a2(fI-ll.\ == I

for all II> 110 ,
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Let q =-= (qn) be the sequence defined by

q1 = ... = qno = 1/3 and for n>no,

and let C N be the N-dimensional set of Cantor type associated to q. Then, ,q

it follows from (:) that

and consequently

Clearly, given any f3 > 0 and y E IR, the sequence (n /l(log n)') satisfies
the properties required on (an)' So we have in particular

PROPOSITION 6. Let f3 > 0 and - 00 < y < 00. Then there exists a set of
Cantor type C N .'! such that

en ( eN,q) ~ n POog nf,

Note that this result stili holds for the more general class of sequences

and one can even add more iterated logarithms.
Finally, we discuss the case f3 = O. This time our example is similar to the

Hilbert cube.

PROPOSITION 7. Given any y > 0, let

Then

f.n(Xy ) ~ (log n)-Y.

Proof In order to produce a 2n-'-distant set in X" choose for each k,
1 ~k~n,a2n-Y-distantset {~Y)};"~lin [-k-Y,k ']suchthatmk~(nlkF.

Clearly the set

M ={J'=(J'(1) J'(n) 00 )'1<' < }
S S/I ""'Sin' , , .... =Jk=mk
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is 211- i'-distant in X" Moreover, for n sufficiently large, we have

"
card(M) = n mk ~ (n"/I1!F ~ 2"'.

k - 1

55

Hence, if 2(" - I); ~ m < 2";', it is not possible to cover X; by m balls of
radius 11 and therefore

This gives the lower estimate. The upper one can be established with
similar arguments. I
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