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INTRODUCTION

The aim of this paper is to determine the asymptotic eigenvalue
behaviour of integral operators in L,(X, u) whose kernels are positive
definite and satisfy a certain Holder-continuity condition. Here X is 2
compact metric space and g is a finite Borel measure on X.

The study of integral operators over compact metric spaces was initiated
by a problem posed by Pietsch at the sixth Polish-GDR seminar on
“Geometry of Banach Spaces and Operator Ideals” (Georgenthal, 1584}
Since then several papers have appeared dealing with operators of this
kind, see [5, 6, 1] and also the forthcoming monograph [2]. The obtained
cigenvalue results reflect compactness properties of the underlying space X
expressed in terms of its entropy numbers (¢,(X)). Moreover, it turned out
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that there are connections between these eigenvalue results and dimension
theory of compact metric spaces, see [1].

In all thesc papers continuity of the kernel in both variables and
a-Holder continuity in one variable is assumed. We consider here weaker
integrated x-Holder conditions and do not require global continuity.

In the onc-dimensional case, i.e., X =[0, 1] and p = Lebesgue measure,
this problem was first considered by Reade [9]. He showed that the decay
of the eigenvalues of such a positive integral operator is of order O(n ~* ).
Later on, Cochran and Lukas [3] extended this result to the case when a
higher-order derivative of the kernel satisfies that Holder condition. They
also gave a new proof of Reade’s result. But in both of these papers the
additional assumption of global continuity of the kernel is necessary for the
mcthds of proof.

Thus, cven in this one-dimensional case, we improve the known result
since we do not require global continuity of the kernel, which seems a bit
artificial in conncction with integrated Holder conditions.

The gencral approach that we develop allows us to obtain as an
immediate consequence a generalization of Reade’s result to the multi-
dimensional case of bounded domains in R™. The procedure we use alsc
works for arbitrary Borel measurcs and not only the Lebesgue measure.

Nevertheless, the basic idea of our proof is not new. One can find it in
scveral papers by different authors (in particular, in [9, 3]). We first
approximate the integral operator by a finite rank operator such that the
difference 1s still a positive operator in L,(X, u), and then we estimate from
above the trace of this difference.

The paper is organized as follows. In the first section we fix notation and
give somc preliminaries. In the second section we prove the eigenvalue
result, and in the third one we show that it is optimal in general. In the
final fourth section we construct some examples of compact metric spaces
with regular entropy behaviour. Thus we illustrate that the condition
£2,(X) ~¢,(X), which we need for our results, is quite natural and is
satisfied for many compact spaces.

1. PRELIMINARIES

In what follows, we designate by X a compact metric space and by d its
metric. The symbol B(x, ¢) stands for the open ball of radius £¢>0 with
centrc xe X

B(x,¢)={yeX:d(x, y)<e}.
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Given a set A S X,
diam(A4)=sup{d(x, y):x, ye 4},

denotes its diameter. We say that the set A is e-distant, if d(x, y)= ¢ for ail
X, yeAd, x#y.

The entropy numbers (e,(X)) of X are given by ¢, (X)=inf{e>0:
therc are x,,.,x,eX with X={)7_, B(x,,¢)}} (see [5]). Note that
lim, _, _ ¢,(X)=0 is equivalent to precompactness of X (and therefore to
compactness if X is complete). Thus the rate of decay of ¢,(X) as n— x
can be considered as a measure for the “degrec of compactness” of X.

By a partition of X we mean a finite family ./ of disjoint Borel sets
Ay, .., A, such that |J7_, A, = X. The diameter of </ is defined by

i=1

diam(.«/)=sup{diam(A4). A€.o/}

We say that the partition .« is finer than the partition Z (=7 < %) if cach
A e .o is contained in some Be #. Given any two partitions .o/, and &%,
there always exists a partition .« finer than these two, ¢.g.,

A ={A,NA,: A€o}

For 0 <2 =1, the space of x-Hélder continuous functions is defined as
C*(X)={f: X —>C: fis continuous and | f{| - < = },
wherc
. x)— /)
1£1 ¢ = max {sup 1/(x)], sup ‘—f—(—’—/——)}

\x
rxex xoyrclkX d(X, yi
YA

Let i be any finite Borel measure on X. We recall that every finite Borel
measure g on 4 compact metric space X is regular in the sense that for any
Borel set £< X we have

w(E)=inf{u(G): Gisopenand ES G}

see, e.g.. [4].
We shall work with the class of kernels L (X, u; C*(X)) formed by all
Borel measurable kernels K: X x X — C such that the norm

1Kl yen = | 1K) s du(2)

vX

18 finite.
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Note that if Ke L (X, g; C*(X)), then therc is a non-negative function
Le L;(X, u) such that

|K(t, x)— K(¢, y)| £ L(1) d(x, y)* forall 1, x, yelX

For Ke L (X, p; C*X)), the integral operator with kerncl K and
measure u is defined as

Tef(x)=] Kz y) f(y) du(y)

for feL,(X, u) and xe X.
Subsequently, we are only interested in positive definite kernels, thus we
always assume that K is Hermitian, i.c.,

K(x, y)=K(y, x) forall x, yeX.

It is easily checked that the integral operator T, associated to such a
kernel Ke L,(X, p; C*(X)) definecs a bounded operator in L,(X, u) and
also in L (X, p). Consequently, by the well-known Riesz-Thorin theorem,
the operator

TK.u: LZ(X’ lu') i LZ(X’ Au)

is bounded.

Assume now that H is a (complex) Hilbert space and Se ¥(H, H) is a
compact operator. We denote by (4,(S)) the sequence of all eigenvalues of
S counted according to their algebraic multiplicities and ordered with
respect to decreasing absolute values,

(S 2 14(S) 2 --- 20.

If S has less than »n eigenvalues, then we sct

i
Il

;”II(S):)'Il—l(S) 0
The singular numbers of S are defined as
5.(8)=7.([S*S]?).

Clearly,
$,(8)=0 if rank(S)<n.

Moreover, it holds
Sn 4 m - I(Sl + SZ) ésn(Sl).*_ Sm(SZ)

sce, e.g., [8].
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An operator Se ¥ (H, H) is called positive if
(Sh, hy=0 forall heH.

A Hermitian kernel K is called positive definite if T , 1s a positive operator
in L,(X, p).

As usual, given two sequences (a,), (b,) of positive real numbers, we
write a, = 0,(b,) if a,Zcbh, for some ¢>0 and all ne N, while ¢, ~ 5,
means that both a,= 0(b,) and b, = O(a,). Moreover, wc write ¢, = 0(b,)
if lim, _, , a,/p,=0.

2. EiIGENVALUE RESULTS

Before we can prove our main thcorem we still nced an auxiliary result
which follows easily from elementary measure theory.

LemMma 1. Let X be a compact metric space and let d, > 2¢,(X) with
lim,_,  d,=0. Then there are partitions &, and B, of X such that for all
ne N the following properties are satisfied.

(1) card(ef,)<£n and diam(Z,)=<d,.
(2) '%n [ | <‘%’n<'9/:r
Morecver, if we define

G, :=spaniy,: Be 4,},

then

(3) For any finite Borel measure p on X, |
Hilbert space L,(X, u).

G, is dense in the

®
n=1

Proof. We start by constructing the partitions Z,. Since r,:=

d,/2>¢,(X), it follows from the definition of the entropy numbers that
therc exist » balls By, ..., B, of radius r, that cover X. Setting

A, =B, and A, =B\ 4, for i=2,..,n,

j<i

we get a partition &, = {4, .., 4,} of X with property (1).

Next we find by induction the partitions %,. For n =1 we take %, :=.¢/.
If the partitions #,, ..., #, have been already constructed, then we take as
4, . | any finite partition which is both finer than .«/, ., and 4, (as we men-
tioned under Preliminaries, such partition always exists). Obviously (2)
also holds.
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It remains to prove (3). Let y be any finite Borcl measure on X. The step
functions that take only finitely many values are dense in L,(X, ), sce, c.g.,
[4]. Hence it suffices to show that for every Borel set £< X and cach ¢>0
there are ne N and ge G, with |lx,. —gll,, =S¢

Since p is a regular measure, we can find an open set G such that ES G
and p(G\E) < ¢%/4. Next we define sets F,,:= U . 5 g B and show that
G=U> F,.

Given lamy x e @ there is § >0 with B(x, §) S G, since G is open. Choose
meN with d, <. The point x belongs to some set B of the partition
%,.. Moreover, since %, is finer than ¢/, we have diam(B)<d,, <é.
This implies xe B< B(x,d)<= G, and therefore xeF,. Consequently
G< Uy, F,. The other inclusion is obvious.

The sets F, are increasing because the partitions %, become finer with
increasing n. This, together with the g-additivity of u, gives

WG)= lim u(F,).

n +oc
Hence we can select an integer ne N with

WG\F,) < /4.

By definitions of F, and G,, the function g =y, belongs to G,,. This finally
yiclds

Mg — gl S hre ~xal,+ e~ 8l
=p(G\E)"? + u(G\F,)'* <L e.

Thus (3) 1s satisfied as well, and the proof is finished. [

After this preparation we can pass to our main result on the asymptotic
eigenvalue behaviour of intcgral operators whose kerncls are positive
definite and satisfy an integrated a-Holder condition.

THEOREM 2. Let X be a compact metric space equipped with a finite
Borel measure y, let 0 <o <1, and assume that e,,(X)=¢,(X). Then, for
every positive definite kernel Ke L\(X, u; C*(X)), one has

2T ) =0(n""e (X))

Proof. We shall write simply 7 instead of 7., and L, instead of
L,(X, u). We shall also use the notation introduced in Lemma 1.

Let P, be the orthogonal projection in L, onto the finite-dimensional
subspace G, constructed in Lemma 1. Since the G,’s are increasing and
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their union is dense in L,, we can find an orthonormal basis (¢;),, \, such
that
G,=span{e,, ... e, }.
For any operator S in L,, we have
Jn
trace(SP,)= Y (Se;.¢;).
A

Moreover

trace(S) = Z (Se;, ¢;)

J -1

provided the series converges. For positive S, all summands are non-
negative, so the convergence of the series is equivalent to

Jn
sup Y (Se;, e;)=sup trace(SP,) < 0.

n j=1 n

In this case,

trace(.S) = sup trace(SP,).

”n

Now let @ be the orthogonal projection onto
E:=span{y,: Ae.d,},

where m is some fixed integer and .</, is the partition from Lemma 1. We
want to estimate from above

trace((/ — Q) T( — Q)).

Obviously (/— Q) T(I— Q) is a positive operator in L,, hencc the preced-
ing observaion applies. So, let us fix n=m, and let 4,, .., 4, and B,, .., B,
be those sets having positive y-mcasure in of, and %,, respectively. Then
the functions

fi=w(A) Py i=1, ..k and g, i=u(B) P yp. =1,

form orthonormal bases in £ and G,, respectively. Moreover, we have
FE < G, because 4, is fincr than o7,,. Therefore

QP,=P,0=0.

640.63:1-4
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Observing that
YA | S =1 ae
and

L0 [ g1 e

we obtain

trace((/ — Q) T(I — Q) P,) = trace(T(I - Q) P,(I— Q))
= trace(T(P,— Q))
=trace(TP,)— trace(1Q)

=ZJ J K(1, x) g,(x) g;(1) du(x) du(r)
j -1 XX

k

— ¥ [ K@ ) 100 S0 duty) duio)

=Y % [ ] IR0k 0] g0 g0

im1j=1

x fi(y) fi(t) du(x) du(y) du(t).

Since every B, is contained in some A, we can split the index set {1, ..., r}
into disjoint subsets

L ={jB,c A}, i=1, .,k
For fixed i, the integrand is only non-zero when

Y, leA,; and x,1€B; for some jel,.

But in this case, it holds xe€ A; as well. Whence the assumption on the
kernel implies

|K(, x) = K(1, y)] < L(1) d(x, y)*
< L(1)[diam(4,)]*
for some non-negative function Le L, (X, ). By Lemma 1

diam(4,) < d,,,
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where d,, > 2¢,,(X) can be chosen arbitrarily. In addition, the properties of
the partitions of Lemma 1 give

”(Al)z Z ‘U(Bj), I:l’- ky

jed,
and
k
U U B, =X
i=1jel
Ali this together yiclds the estimate

trace((I— Q) T(I— Q)P,) < d, Z Z} | jB L(1) du(x)

f=1jel; -/

x du(y) du(t) p(4;) "' w(B) '

=d* Z 5 JB 1) du(1)

i=1jci,

=d;, IL|,,.

On the other hand, taking into account that
rank[T—([-Q)T(I—- Q)] £2k £ 2m,
we have

‘53m(T)<‘m((] Q ] Q) +s2mrl -([—'Q) T(I'—Q))
= 5,((1~Q) T(I— Q)
Consequently,
msim(T) émgm((l— Q) T(I— Q))

<

||'[\/J(1

/((I—Q) T(I-Q))

= ace((l— Q)T(-Q))
=sup trace((/— Q) T(I—-Q)P,)<d;, IL|,,

Letting d,, - 2¢,,(X) and observing that A,,,(T)=s.,(T), since T is a
positive operator in L,, we obtain

Ay T)Sm ~12%,,(X)* ILE,,.
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Finally, the assumption &,,(X)~¢,(X) yields the desired asymptotic
behaviour

idT)=0(n" "e,(X)). 1

Remark 3. The assumption ¢,,(X) ~¢,(X) excludes, roughly speaking,
too fast decay of the entropy numbers of X. This condition is not very
restrictive; e.g., it is satisfied for every connected compact metric space (see
[5, Lemma 3]), or if ¢,(X)~n"*(log n)? for some >0 and 7€ R. In the
last section of the paper we give examples of such compact metric spaces
which are totally disconnected.

In the proof of Theorem 1 we have note used the compactness of X but
only the behaviour of its entropy numbers. Therefore, since the entropy
numbers of any bounded Borel set 2 < R” with non-empty interior are of
the same asymptotic order as those of the unit cube [0,17%, ie,
£,(2) ~n VN we derive as an immediate consequence

THEOREM 4. Let p be a Borel measure on a bounded Borel set Q< R"
with non-empty interior and let Ke L\(Q, u; C*(Q2)) be a positive definite
kernel. Then

ilTx,)=0(n =N,

This theorem extends Reade’s result mentioned in the Introduction to
multidimensional domains and arbitrary Borel measures. Note that global
continuity of the kernel is not required, although this extra assumption was
necessary for Reade’s original proof [9] (and also for the Cochran and
Lukas one [31]).

3. OPTIMALITY OF THE EIGENVALUE ESTIMATES

In this section we comment on the sharpness of the eigenvalue results
established in Theorems 2 and 4.

The following theorem shows that the asymptotic order of the eigen-
values established in Theorem 2 is the best possible.

THEOREM 5. Let X be a compact metric space satisfying €,,(X) ~ &,(X),
and let 0 <a £ 1. Then for every sequence (a,) of positive real numbers with
a,=o(n""e, (X)) there are a finite Borel measure 11 on X and a positive
definite kernel Ke L,(X, u; C*(X)) such that

l—ia A’n(TK,u)/an= .

n— x
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Proof. First we show that (a,) can be majorized by a sequence (4,)
such that still 4,=o0(n"'¢,(X)*) and moreover A4,,~ A4,. This latter
property is essential for our proof.

By assumption

a,<c,n” e (X)*  with lim ¢,=0.

n - X

Defining

. C
C, :=sup ¢, Cy,=C,,, 1 :=max (——f sup ('k) for nz1

k=t k22

we obtain a sequence which clearly satisfies
c,2C, and C,,z2CJi2,n=12 ..

By induction one easily verifies that (C,) is decreasing. Hence lim,, _ , C,
exists, and the estimate

lim C,= lim C,, £} lim C,+ lim sup ¢,=13 lim C,

IR no+ X n - R X g n— o
shows that this limit is zero. Then taking
A, =C,n g (X)*

we get the desired sequence. Obviously A4,=a, and A,=o(n ‘'c,(X))
Moreover A,, ~ A, because the sequences (C,), (n ') and (¢,(X)} enjoy
this property.

So without loss of generality we may assume that a,,~a,. Put
b, := (na,)"*. Then one has

lim ¢, (X)/b,=x and by~ b,.

7= 0

The following construction is based on ideas taken from [5, Theorem 3.
For k=1, 2,.., we find inductively positive integers n,, real numbers ¢,,
0<e¢g, <1, and subsets X,, Y, of X with the following properties:

(1) n,>n. , and ¢, xgakgks'ﬂzbn‘;

(2) X, and Y, are closed subsets of Y, _ ,;

(3) X, is a 2¢,-distant subset consisting of n, elements;
(4) d(X,, Y)2e;

(5) IEn - o 8n(yvk)/brx'Td:'

To prove this, assume that for 1 < j<k we have already found n,, ¢, X,
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and Y, with properties (1) to (5). (In the first step of induction we can
argue in the same way but starting with X instead of ¥, _,.) Using (5) and
the fact that b,, ~ b,, we can find an integer n, > n, _, such that

ks'ﬂabnk Se = 82;%( Y, 1)/3

Moreover, compactness of Y, _, implies that its entropy numbers tend to
zero. Hence we may also assume that ¢, <¢,_,. Thus (1) is satisfied. Let
now M be a maximal 2¢,-distant subset of Y, ;. Then

Yo € U B(x 28),
xe M

and since 28k<£2,,k(Yk_ 1), it also follows that card(M)=2n,. So we can
select two disjoint subsets M, and M, of M, each one containing n,
elements. The sets

Z,:= ) B(x, &) i=1,2,

xeM;

are disjoint as well. Whence
Y =Y \Z)) V(Y. \Z,)
Using again (5), the trivial observation

82n(Yk—l)§max gn(Yk—l\Zi)a nGN,
i=1,2

and the fact that b,, ~ b,, we obtain that for at least one i, say i=1,

m sn(}’k—l\zl)/bnzq>

still holds. Consequently, if we set
X, =M, and Y, =Y, \Z,,

the conditions (2) to (5) are satisfied.
Next we construct the measure ¢ and the kernel K.
Put

Xe={xi; j=1,..n}, keN,

and define p as the point measure assigning to x, ,, j=1, .., n,, ke N, the
mass k~?n;'. Clearly u is a finite Borel measure on X.
In order to construct the kernel, consider the functions (see [5])

fk,j(x) := [max(0, 1 - d(x, X )e) 1% xeX.
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Elementary computations show that for any ke N and any sequence of

scalars (£;)* | it holds
b

o ., L
‘2: é/fk.j\ll(_]§23k_“ max {¢;]. {*)

1 <
L 1S s

l

Define now

K(x, y) = Z k2% Z T 40 fu A )

k=1 jo=t

For each xe X and ke N, it follows from (*) that

[l |
U3 S (0, S2607 max 17, (012607
=1 P Tsjism

Thus, for every xe X, we get

1K, e s2 Y kP =c< 0,

=1

and consequently
1Kl ey = | IKGE M dulx) € en(X) < oc.

Moreover, K is positive definite because, given any f € L,(X, u), we have

(Ten i)=Y k%5 S \(f fi JP220.

k=1 j=1

To complete the proof, we need to show that

_l_i_rﬁ ;.‘n(TK‘u)/an = C.

n-» oL

According to the definition of f, ;, we see that

1 if k=randj=s,
0 otherwise.

S (5= {

Hence, for keN and j=1, .., n,, we have

g L —4 | e
Te, Je,=k7'ng el fe
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Whence, using (1) and recalling that »,=(na,)!”, we arrive at the
incquality

AT ) 2k ~%n tep 2 kni 'b% = ka,,.
Since this estimate holds for the strictly increasing sequence (), we finally
obtain the desired assertion

lim 72(Tk ,)a,=x. |

n-» x

Theorem 5 also implies that the asymptotic behaviour of the eigenvalues
established in Theorem 4 is the best possible. In fact, for the case of
bounded domains in R¥, the optimality even holds in a stronger scnse,
namely without constructing a suitable measurc but using the most natural
measure on R”, i.e., the Lebesgue measure.

Indecd, consider the N-dimensional unit cube [0, 11" equipped with the
Lebesgue measure p. It was proved in [7, Theorem 5] that, given any
0 <a < 1, there cxists a positive definite continuous kernel K such that

o lK(t’;()x— ,K)(t—— M o0 [therefore Ke Ly([0, 11% CX([0, 137))]

X%y

and

—a/N ]

;'n(TK,;z) =hn

Whence the eigenvalue estimate cannot be improved.

4. EXAMPLES OF COMPACT METRIC SPACES WITH
REGULAR ENTROPY BEHAVIOUR

We have already mentioned in Remark 3 that the condition ¢,,(X) ~
¢,(X) which we need for our results, is satisfied for every connected com-
pact metric space, or if &,(X)~n""(logn)". In this final section we give
fairly easy examples of totally disconnected compact metric spaces X such
that

e,(X)=n P(log n)’

for given >0 and ye R, or =0 and 7 <0. Similar examples can be found
in [6], but only for a very special choice of § and ».

First we describe a construction which is quite common in geometric
measure theory and in the theory of fractals. The basic model of this
construction is the Cantor set.
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Let ¢ =(g,) be any sequence of positive real numbers such that for some
r>0

r<yg,<1/3, n=1,2, ..

n
Start with the unit interval [0, 1] and remove in the first step an open
interval, such that two closed intervals of length ¢, remain. Then proceed
inductively, but at the nth step take the ratio ¢,,.

So, after n steps, one has 2" closed intervals 7, ,, 1 £7<2" of length
g, ---¢, with mutual distance 2 ¢, ---¢, (since all g, <1/3). Put

2n

E,.=\)1,, and C, = ﬂ E,.

j=1 n—1

Note that never endpoints of intervals are removed. Therefore €, contains
2% points (namely the cndpoints of the 2" intervals [, ;) which have
mutual distance =gq, ---¢,. Moreover, the 2"*' (closed) balls centered at
these points with radius ¢, ---¢,/2 cover I, and hence also C, .
Carrying out this construction in R* {with the sup-metric), i.e., setting

CN.:] = ﬂ E”X XE,,.

M-times

we get 2+ DY noints with the same properties as above. Whence,

4, -4qn dy " qn. 1
- Sem(Cyh ) S 5

L L

IIA

l.ql.“qn
r 2

that means

—
*
~—

82n,\'( (:A‘\', q) =4qy--4,-

Let now (a,) be any sequence of positive real numbers such that for
n > ng it holds
a § akn//an é A and dpi § ys
where 0 <a < A <1 are constants and k=2 is some integer. This implics
that for appropriate r>0 and Ne N

A nn
r<—=

T dyin-ny

<173 forall n>n,.
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Let ¢ ==(g,) be the sequence defined by

- . =g = =— for n>ng,
1 G =1/3 and an dain- N 0

and let Cy, be the N-dimensional set of Cantor type associated to g. Then
it follows from (}) that

Aon¥
exi(Cr ) = gy o = (1/3)° 2= = ay,
azn()N

and consequently

gn(c:\i.q) = an'

Clearly, given any >0 and y€e R, the sequence (n P(log n)?) satisfies
the properties required on (a,). So we have in particular

PROPOSITION 6. Let >0 and — oo <y < oo. Then there exists a set of
Cantor type C , such that

8n((:,’\l,q) ~n /j(log n))"

Note that this result still holds for the more general class of sequences

(n~F(log n)" (log log n)°),

and one can even add more iterated logarithms.
Finally, we discuss the case f=0. This time our example is similar to the
Hilbert cube.

PROPOSITION 7. Given any y> 0, let
X,={{=(el . |&Isk 7}
Then
£,(X,)~(logn)~>

Proof. In order to produce a 2n~’-distant set in X, choose for each k,
1<k<n,a2n "-distantset {7 in [ —k~7, k "] such that m, 2 (n/k)".
Clearly the set

M= {é = (é;’ll), sees é;:)’ 0’ 03 ) 1 éjkémk}
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is 2n~ -distant in X,. Moreover, for n sufficiently large, we have

card(M) =[] my= (n"/nt)’ 22"
k-1

Hence, if 2"~ D7 <m < 2", it is not possible to cover X. by m balls of
radius n° “, and therefore

En(X,) 207 > (log m) ™.

This gives the lower estimate. The upper one can be established with
similar arguments. [
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